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We study the quantum fidelity approach to characterize thermal phase transitions. Specifically, we focus on
the mixed-state fidelity induced by a perturbation in temperature. We consider the behavior of fidelity in two
types of second-order thermal phase transitions �based on the type of nonanaliticity of free energy�, and we find
that usual fidelity criteria for identifying critical points is more applicable to the case of � transitions �divergent
second derivatives of free energy�. Our study also reveals that for fixed perturbations, the sensitivity of fidelity
at high temperatures �where thermal fluctuations wash out information about the transition� is reduced. From
the connection to thermodynamical quantities we propose slight variations to the usual fidelity approach that
allow us to overcome these limitations. In all cases we find that fidelity remains a good precriterion for testing
thermal phase transitions, and we use it to analyze the nonzero temperature phase diagram of the Lipkin-
Meshkov-Glick model.
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I. INTRODUCTION

Quantum phase transitions �QPTs� �1�, the sudden change
in the properties of a quantum many-body system as a con-
trol parameter is varied, have been the focus of a wealth of
research in the past decades. Once almost exclusively the
domain of condensed matter physics, the field of quantum
critical phenomena has recently attracted the attention of the
quantum information community: some quantum entangle-
ment measurements �2� such as concurrence �3�, entangle-
ment entropy �4�, and geometric phase �5� can exhibit singu-
lar behavior at quantum critical points. Thus, they can be
used in place of macroscopic thermodynamic quantities in
classical statistical mechanics—e.g., specific heat and mag-
netic susceptibility—not only to characterize different QPTs,
but also to gain insight on the nature of the quantum critical
behavior.

Motivated by the sensitivity to perturbations of quantum
systems near a critical region, one of us and collaborators �6�
proposed to use the Loschmidt echo �7� as another quantum
information probe of QPTs �8�. Based on this work, Zanardi
et al. further proposed a geometric measure: the quantum
fidelity �9� �the overlap� between two ground states corre-
sponding to slightly different values of the controlling pa-
rameters. A flurry of work ensued �10,11�, showing that, de-
spite its simplicity, quantum fidelity does indeed capture the
dramatic changes in the structure of the ground state at a
quantum critical point. In particular, it has been observed that
for second order QPTs fidelity presents a minimum at the
critical point �9�, which became the standard criterion for
detecting quantum criticality with fidelity. Though fidelity is
used to study QPTs at zero temperature, its finite-temperature
�thermal state� extension has also been considered �12�. The
motivation behind this approach is similar to that for QPTs:
The proximity to criticality must be reflected in the geomet-
ric distance between two states separated by a small pertur-
bation �either in temperature or in an external parameter�.
The fidelity of mixed states �13,14� at finite temperature also
gives useful information about the zero-temperature phase
diagram �12�. Studies of finite temperature transitions using

this fidelity approach have been reported for specific models,
such as the Stoner-Hubbard itinerant electron model of mag-
netism, the BCS model �15�, and also the crossover at finite
temperature in the one-dimensional transverse Ising model
�TIM� �16�. Nevertheless, we find that, in the existing litera-
ture, the mechanism for which fidelity can be used to char-
acterize thermal phase transitions has not been studied sys-
tematically. Here, we will study the applicability of the
mixed-state fidelity approach to general second-order ther-
mal phase transitions. We will focus on nonzero temperature
phase diagrams and illustrate our arguments with specific
examples. Finally, we will also discuss the quantum-classical
transition of the system when increasing the temperature
from a new angle: the relation between quantum fidelity and
magnetic susceptibility. In the rest of this work, and unless
explicitly stated, we will use the term fidelity to mean mixed-
state fidelity.

This paper is organized as follows. In Sec. II, we intro-
duce the finite-temperature mixed-state fidelity and study its
relation to the analyticity of free energy. In particular, we
show why fidelity can signal phase transitions by establish-
ing its relationship to specific heat and magnetic susceptibil-
ity. In Sec. III we study examples of two types of second-
order thermal phase transitions—either a divergence or a
discontinuity of specific heat at critical points—and discuss
the corresponding behavior of mixed-state fidelity. The prob-
lems in characterizing the second type of transitions with
fidelity will be shown. In Sec. IV we discuss two problems
of the fidelity approach to thermal phase transitions, and pos-
sible solutions: fidelity decay alone cannot distinguish be-
tween phase transitions and crossovers, and at high-
temperature thermal fluctuations that can reduce the
effectivity of fidelity for picking out critical points. The
workaround to these problems will come from the insight
gained with the connection of fidelity and standard thermo-
dynamical quantities. In Sec. V, we use the Lipkin-Meshkov-
Glick model as an example to demonstrate that, despite its
limitations, fidelity remains a useful pre-criteria for thermal
phase transitions due to its simple form.
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II. FINITE-TEMPERATURE FIDELITY AND ITS
RELATION TO SPECIFIC HEAT AND MAGNETIC

SUSCEPTIBILITY

The mixed-state fidelity of two thermal states with small
perturbations in temperature and controlling parameter is de-
fined as �12–14�

F��0,�0;�1,�1� = Tr���0�1
��0, �1�

where the thermal states are written in terms of the Hamil-
tonian H of the system

�� =
e−��H����

Z���,���
, �2�

with the partition function

Z���,��� = Tre−��H����, �3�

and where we have perturbations in the Hamiltonian param-
eter �1=�0+�� and in temperature �0=1 /kBT0, �1
=1 /kB�T0+�T�. In the following we set Boltzmann’s con-
stant kB to unity. It can be checked that when both tempera-
tures T0 and T1 decrease to zero, the mixed-state fidelity
reduces to the ground-state fidelity ���g.s.��� ��g.s.��+�����,
where ��g.s.���� is the ground state of Hamiltonian H��� for a
particular value of the controlling parameter �.

When ��=0, we define the temperature fidelity
F���0 ,�1 ,��	F��0 ,� ;�1 ,��, which simplifies to

F���0,�1,�� =

Z
�0 + �1

2
,��

�Z��0,��Z��1,��
. �4�

It can be further proved �see Appendix A� that for small
perturbations �T /T�1 �18�

F���0,�1,�� � e−�����2/8�2�Cv, �5�

where Cv=−T�2F /�T2 is the specific heat at constant field
obtained from the free energy F of the system. It is interest-
ing to notice that the temperature fidelity defined in Eq. �4�
can be used for a classical system as well as for a quantum
system, since it only has partition functions. This surprising
applicability, a quantum measure used for classical systems,
can be understood in terms of a map that allows to identify
any T�0 phase transition in a classical lattice system with a
quantum phase transition of a quantum model in the same
lattice �17�. In a basis that maps one quantum state �	� to
each allowed classical state 	, the associated quantum model
has a ground state whose coefficients are the square root of
the Boltzmann weight of the corresponding energies, i.e.,
�g����=	 exp�−�E	 /2��	� /�Z���. The quantum model can
be thought of as “quantum simulating” the classical system,
whose thermodynamical properties can be found by a proper
quantum annealing to the ground state �17�. Therefore, it is
straightforward to see that Eq. �4� used for a classical system
corresponds to the usual ground-state fidelity �as defined by
Zanardi �9�� of the associated quantum simulator evaluated
at neighboring temperatures �0 and �1.

When �T=0, we can define F��� ,�0 ,�1�
	F�� ,�0 ;� ,�1�, which can be approximated as �see Appen-
dix B�

F���,�0,�1� �
Z
�,

�0 + �1

2
�

�Z��,�0�Z��,�1�
. �6�

The approximation in Eq. �6� is due to the fact that, in gen-
eral, H��0� and H��1� do not commute with each other, and
is valid only for high temperatures such that �3��3�1. From
Eq. �6�, and using arguments similar to those used for Eq.
�5�, it can be shown that �19� �see Appendix C�

F���,�0,�1� � e−������2/8�
, �7�

where 
=−�2F /��2 is the susceptibility to an external field
of strength �= ��0+�1� /2.

We see then from Eqs. �5� and �7� how the fidelity crite-
rion for detecting a second-order phase transition �16,18,20�
plays out for mixed-state fidelity: The minima of F are as-
sociated with the singularities of the specific heat and mag-
netic susceptibility. More generally, as we will see below, F
inherits all nonanalyticities of the free energy, be them diver-
gences or discontinuities in its second derivatives. Therefore,
it is reasonable to expect that fidelity can be used to study
thermal phase transitions, just like traditional criteria based
on specific heat or susceptibilities.

It is interesting to note that from the above Eqs. �5� and
�7� we can also obtain the so-called perturbation-independent
fidelity susceptibilities �18�


� 	
− 2 ln F�

����2 �
1

4�2Cv, �8�


� 	
− 2 ln F�

����2 �
�

4

 . �9�

We would like to emphasize that Eqs. �6� and �9� hold ap-
proximately only for high temperatures, and are a bad ap-
proximation for low temperatures and especially for zero
temperature, where quantum commutation relations are rel-
evant. We will discuss this point in Sec. IV. Usually the
calculation of F� is much more difficult than that of F� due
to the noncommutativity of H��0� and H��1�. In the follow-
ing we will focus on the fidelity for a perturbation in tem-
perature F�, and its application to second-order thermal
phase transitions.

III. FIDELITY IN SECOND-ORDER THERMAL PHASE
TRANSITIONS

Second-order thermal phase transitions are characterized
by nonanalyticities in second derivatives of the free energy
�e.g., specific heat, susceptibility� with respect to thermody-
namic variables �temperature and external magnetic fields�.
According to standard classification �21�, there are two types
of nonanalyticity that need to be considered: discontinuities
and divergences �also known as � transition�. For ordering
purposes we call the associated transitions type A and type B,
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respectively, shown schematically in Fig. 1. In the following
we will discuss the behavior of fidelity near the critical
points associated to these two types of thermal phase transi-
tions.

A. Type A: divergence of second-order derivative
of free energy

In this type of transition—an example of which is the
phase transition in the � line of 4He—the specific heat at the

critical point is much larger than that at other points, and
diverges in the thermodynamic limit. From Eq. �5� we know
that the critical point signaled by the maximum Cv will cor-
respond to a minimum of fidelity F. Thus, for this type of
systems the decay of fidelity as a function of the parameters
�and with a fixed perturbation �T� can be used to characterize
accurately the phase boundaries. A good example of this situ-
ation is the two-dimensional �2D� classical Ising model. This
system is described by the Hamiltonian H=−J�i,j�sisj
+�isi, where �i , j� means sum over nearest-neighbor sites
si= �1 and � is the external magnetic field. Onsager’s fa-
mous solution �22� gives the partition function for zero ex-
ternal magnetic field ��=0�,

Z��,� = 0� = exp�N ln�2 cosh�2�J��

+
N

2�
�

0

�

d� ln�1 + �1 − K2�sin ��2

2
�� , �10�

where K=2 sinh�2�J� / �cosh�2�J��2. By inserting this into
Eq. �4�, we can obtain the fidelity �F���0 ,�1 ,����=0 for the
2D classical Ising model �see Fig. 2�a� for the case of �T
=0.001 and ��=0�.

The minimum of fidelity agrees well with the analytical
result for the critical temperature Tc�2.27J �see for com-
parison the specific heat on the right panel�. Since fidelity
decays only on the critical lines, we conclude then that its
minimum is a good indicator of criticality in this type of
transitions. Nevertheless, we would like to point out that the
decay of fidelity at the critical points becomes less drastic for
higher temperatures for a fixed �T. This is because thermal

Type A Type B

CV

TTc TTc

CV

S

TTc

S

TTc

FIG. 1. Schematic diagrams of two types of second order phase
transition. Type A corresponds to a divergence of second derivative
of free energy, while type B corresponds to a discontinuity �jump�
of second derivative of free energy. In this example we plot the first
and second derivative of free energy that correspond to entropy and
specific heat respectively. Second-order phase transitions of type A
are also called � transitions.
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FIG. 2. �Color online� Fidelity �left� and specific heat �right� of the 2D Ising model at zero external field and N=2000, �T=0.001. The
critical temperature Tc�2.27J, indicated by the dashed line, is clearly signaled by the minimum of fidelity. Because the specific heat
diverges at the critical point, the 2D Ising model corresponds to a type-A second-order phase transition.
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fluctuations tend to wash out the information about phase
transitions encoded in the fidelity, an effect we will discuss
in more detail in Sec. IV.

B. Type B: discontinuity of second-order derivatives
of free energy

A common type of transitions is characterized by a dis-
continuity or jump of second order derivatives of the free
energy at the critical point. This is the case, for instance, in
systems described by a simple Landau-Guinzburg theory
�21�. In such systems fidelity will not present in general a
minimum at the critical points, but somewhere else in the
phase diagram. A good example of these type of transitions is
the Dicke model, a collection of N two-level atoms interact-
ing with a single bosonic mode via a dipole interaction with
an atom-field coupling strength � �23�. The Hamiltonian of
the Dicke model can be written as

H = �0


Jz + a†a +

�

�N
�a† + a��J+ + J−�� , �11�

where a and a† are annihilation and creation operators of the
bosonic mode; Jz, J+, and J− are angular momentum opera-
tors of the total spin of the system;  and 0 are the natural
boson and spin frequencies of the decoupled system; and � is
the spin-boson interaction strength. The energy scale is de-
termined by  and 0, and phase transitions are controlled
by the controlling parameter �. The model described by
Hamiltonian �11� exhibits both a second-order thermal phase
transition �24� and a quantum phase transition �25,26�, which

has been studied using ground-state fidelity �9�. Here we will
study the phase diagram of the Dicke model at finite tem-
peratures using mixed-state fidelity �4�. The exact partition
function of the Dicke model under the rotating wave ap-
proximation �RWA� is �26�

Z = 2�
0

�

drre−�r2�2 cosh
�0

2
�1 +

4�2r22

N0
2 ��N

.

�12�

From this partition function one can obtain that there is a
second-order phase transition for ��1 at a critical tempera-
ture �25,26�

1

kBTc
=

2

0
tanh−1
 0

�2� . �13�

From the partition function of Eq. �12�, we obtain the fidelity
and the specific heat of the Dicke model �see in Fig. 3 the
case of =0=1, �T=0.001, and ��=0�.

There are three aspects to highlight from the fidelity and
specific heat shown in Fig. 3. First, in the region where there
is a thermal phase transition, ��1, the minimum of fidelity
does not coincide with the phase boundary line. This is easily
attributable to the absence of a divergence in the specific
heat, which by means of Eq. �5� implies that the minimum of
fidelity need not be correlated to the transition line. Second,
fidelity presents minima in the region 0���1, where the
system only has a crossover �as seen from the specific heat,
Fig. 3�b��. This is again explained by the relation between
fidelity and specific heat, Eq. �5�: all maxima of the specific

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

λ

k B
T
[λ
]

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

λ
k B
T
[λ
]

(b)(a)

FIG. 3. �Color online� Fidelity �left� and specific heat �right� of the Dicke model for =0=1, N=10 000, �T=0.001, and ��=0. On the
left plot, the minimum of fidelity for fixed � is indicated with a solid line. The thermal phase transition line �dashed line in both plots� in the
superradiant phase ���1� is indicated by a discontinuity in specific heat and, accordingly, also in fidelity. The decay of fidelity in the normal
phase �0���1� is due to a crossover instead of a thermal phase transition. The jump instead of a divergence in the specific heat indicates
that the thermal phase transition in Dicke model belongs to a type-B second-order phase transition.
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heat �which may not necessarily imply a thermal phase tran-
sition� will become minima of the fidelity. We will explore
more of this point in the next section. Third, even though the
specific heat has a visible discontinuity at the critical points,
fidelity changes rather continuously across the phase bound-
ary, especially at high temperatures. Here we find a surprise,
since from Eq. �5� we would expect fidelity to be discontinu-
ous at the critical points too. However, as mentioned before,
thermal fluctuations affect fidelity strongly, and this discon-
tinuity is washed out for high temperatures. With these three
observations combined, we see that the usual fidelity ap-
proach is actually not good to distinguish criticality in type-B
phase transitions: it cannot correctly signal the critical points
with its minima, and is not reliable with discontinuities. Fur-
thermore, as in the 0���1 region of the Dicke model,
fidelity might identify simple crossovers as phase transitions.
In the following section we will study at depth more these
problems and possible solutions.

IV. CROSSOVERS AND THERMAL FLUCTUATIONS

As discussed in the Introduction, geometrical arguments
about fidelity in critical systems lead us to expect that fidelity
will have a minimum at the critical transition points. We just
saw that this should be extended at least to identify discon-
tinuities in fidelity with type-B phase transition points �akin
to the behavior of ground state fidelity in first-order QPTs�.
In this section we explore the following question: is it pos-
sible to use fidelity, a quantum information tool, to fully
characterize a critical system at nonzero temperature, i.e., by
properly identifying all transition points of the phase dia-
gram?

A. Crossovers vs thermal phase transitions

The free energy of a system is analytic everywhere in the
�-T plane except at phase transition points. But, there are
many “normal” systems without transitions, i.e., where free
energy is analytic simply everywhere. Nevertheless, this
does not exclude the possibility that at some points the spe-
cific heat can become very large, e.g., at the so-called cross-
over points �1�. In fact, type-A transitions in finite systems
look similar to crossovers that become divergences only at
the thermodynamic limit. Because of the relation between
fidelity and specific heat, Eq. �5�, we expect that fidelity will
also have a minimum at the crossover point. This, in prin-
ciple, can be seen as another feature of fidelity, i.e., that
fidelity can also be used to characterize crossovers �18�.
However, we are interested in the different problem of de-
tecting a phase transition using fidelity.

Let us consider the example of the 1D transverse Ising
model �TIM� with Hamiltonian H=−Ji=1

N �	 i
z	 i+1

z +�	 i
x�.

The partition function of the system is �27�

Z = 2N exp�N

�
�

0

�

dk ln�cosh
2J�1 + �2 − 2� cos k

2kBT
��� .

�14�

We show a contour plot of fidelity for the 1D TIM in Fig. 4
for �T=0.001 and ��=0 �a similar figure can be found in
Ref. �16��. In this figure we see a minimum of fidelity fol-
lowing what seems to be a phase transition line. We know,
however, that this model does not have phase transitions for
finite temperature �one way to see this is to map the 1D TIM
into a classical 2D Ising model, where the inverse tempera-
ture is the effective finite size in the extra dimension of the
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FIG. 4. �Color online� Fidelity F���0 ,�1 ,�� �left� and specific heat �right� of 1D transverse Ising model with coupling J in the �-T plane.
The solid line indicates the minimum of fidelity, while the dashed line shows the maximum of the specific heat. Here, the total spin number
is N=10 000, �T=0.001, and ��=0.
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classical system�. Thus, with only this information fidelity
alone may not be able to distinguish simple crossovers from
proper thermal phase transitions. For example, a simple fi-
delity approach would have led us to postulate a thermal
phase transition for the Dicke model for 0���1 �see Fig.
3�, which we know does not exist from the exact solution. In
order to make this distinction, we must resort to traditional
statistical mechanics criteria—such as the free energy and its
derivatives. We show in Fig. 4 the specific heat for the 1D
TIM in the �-T plane, which clearly does not have a diver-
gence or a discontinuity. In addition, the “crossover line”
found with the minimum of fidelity deviates slightly from the
“crossover line” Tc��1−�� obtained from maximum of spe-
cific heat �see Fig. 4� and magnetic susceptibility �28�. The
later agrees well with resultsobtained from fidelity suscepti-
bility and other discussions �29,30�.

We identify then two difficulties for fidelity to detect a
crossover line: First, that it is indistinguishable from the be-
havior of fidelity at a critical point and second, that it misses
the position of the correct crossover line. To solve the first
problem—and as is common in statistical mechanics
calculations—we can consider the finite-size scaling of fidel-
ity. Indeed, at a proper thermal phase transition specific heat
and other thermodynamical quantities �and therefore fidelity�
will show a very different behavior with system size when
compared to a crossover. This approach, however, could be
limited to systems where divergences develop fast enough
with system size—for example, a logarithmic divergence
might require extensive numerical power to be observed. On
the other hand, such systems are difficult to study also with
traditional quantities, and therefore fidelity remains as good
an indicator of criticality as any.

The solution to the second problem is simpler but more
subtle: by choosing a perturbation that is proportional to tem-
perature �T�T, fidelity correctly signals the crossover line.
This is because with a fixed perturbation in temperature fi-
delity is not simply related to specific heat but it has an extra
dependence with T �see Eq. �5��. The same dependence of
the perturbation on fidelity will be discussed in the next sub-
section as a way to reduce the effect of thermal fluctuations
on fidelity.

B. Fidelity and thermal fluctuations

With fidelity arising from a quantum information ap-
proach, it is natural to question its behavior for moderate to
high temperatures, where quantum effects—such as noncom-
mutation of operators—might be obscured. Indeed, thermal
fluctuations can wash out all information about phase transi-
tions characterized by ground-state fidelity �20�. We already
saw in the Dicke model of previous sections that fidelity
singularities become blurred for high temperatures, while the
specific heat shows a singularity for all temperatures. We
refer again to Fig. 3 for comparisons between F and Cv. We
see that the minimum of fidelity �or its discontinuity� be-
comes increasingly less prominent for higher temperatures,
eventually disappearing from the numerical precision. On the
contrary, specific heat is not influenced by thermal fluctua-
tions and is a robust indicator of criticality up to very high
temperatures.

Let us give a heuristic analysis of the influence of thermal
fluctuations on mixed-state fidelity. The perturbation in tem-
perature �T can be expressed as

�� =
1

T
−

1

T + �T
=

�T

T�T + �T�
. �15�

Hence, from Eq. �5� we can write fidelity as

F� � e−���T�2/8T2�Cv. �16�

From this equation we can see that when temperature in-
creases, for a fixed energy scale and fixed �T, the effect on
fidelity of the singularity of specific heat Cv at critical points
will be attenuated. It is important to highlight that the fidelity
susceptibility �18� 
�=Cv / �4�2�=T2Cv /4 will not be af-
fected by thermal fluctuations at high temperature. Hence,
even though fidelity itself may not be a good indicator of
thermal phase transitions at high temperature, fidelity sus-
ceptibilities seem to be robust—although this is just because
they are proportional to traditional quantities such as specific
heat and susceptibility.

Equation �16� points to a possible workaround to this
high-temperature problem. Indeed, if we choose a perturba-
tion �T that increases with temperature then we can obtain a
fidelity F� that remains insensitive to temperature fluctua-
tions. For example, if �T=�T, such that T1= �1+��T0, then
the minimum of fidelity depends exclusively on the specific
heat and not directly on temperature. The choice of a
parameter-dependent perturbation seems a simple one, but
we remark that it is unusual in fidelity studies in general,
where fixed perturbations are the norm. The reason why it is
necessary in our case is that in this way the perturbation is
always larger than the energy scale set by the temperature
fluctuations. From Eq. �7� we see that we should also con-
sider a field perturbation that depends on temperature, al-
though with a different law.

V. FIDELITY IN THE LIPKIN-MESHKOV-GLICK
MODEL—A CASE STUDY

For all the limitations we have discussed, fidelity decay or
jump at the critical points is still a necessary condition for a
phase transition to exist. Therefore, in the cases where fidel-
ity is easier to compute than traditional observables from
statistical mechanics—such as magnetic susceptibility and
specific heat—it can certainly be used as a precriterion to
explore the phase diagram of a system for potential phase
transitions. In order to test the predictive power of fidelity for
thermal phase transitions, we used it to study the phase dia-
gram of the Lipkin-Meshkov-Glick �LMG� �31� model of N
globally coupled spins with an external magnetic field. The
Hamiltonian of the LMG model in units of the coupling en-
ergy is

H = −
1

N

i�j

�	 i
x	 j

x + �	 i
y	 j

y� − �
i

	 i
z, �17�

where 	 i
�, �=x ,y ,z are the Pauli matrices of the ith spin, �

is an anisotropy parameter, and � is an applied external field.
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QPT of this model at T=0, �=1 has been extensively studied
�32�. However, we far as we know, the nonzero phase dia-
gram of this model has not been explored before. In the
following we will systematically study the finite-temperature
thermal phase transition of this system. We approached this
problem without previous knowledge of its phase diagram,
partly to test the usefulness of fidelity, and partly �to be hon-
est� out of ignorance. In order to solve this model numeri-
cally we used a large spin S=N /2 representation

H = −
1 + �

N

J�2 − Jz

2 −
N

2
� − 2�Jz −

1 − �

2N
�J+

2 + J−
2� ,

�18�

where J�=i=1
N 	 i

� /2, �=x ,y ,z is the total angular momen-
tum operator. This is convenient because Hamiltonian �18�
does not mix subspaces with different projection of the an-
gular momentum, and one just has to diagonalize matrices of
size N�N.

Indeed, our fidelity studies detected something that ap-
peared to be a thermal phase transition in the �-T diagram
�the anisotropy parameter � turns out to be not very impor-
tant as we will see shortly�, see Fig. 5. Here we choose �T
=0.001 and ��=0. We confirmed the existence of a thermal
phase transition with further numerical calculations of the
specific heat and susceptibility, shown in Fig. 6, and by a
mean field calculation that we present here �we are not aware
of such a calculation for finite temperature in the literature�.

Adding and substracting the magnetization along the �
=x ,y direction, M�= 1

N �i=1
N 	 i

��, the LMG Hamiltonian �17�
can be written as
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FIG. 5. �Color online� Temperature fidelity of LMG model for
N=800, �T=0.001, and �=0.2. Both the thermal phase transitions
TC=� / tanh−1 � �0���1� and quantum phase transition at �=1,
T=0 are indicated by the discontinuity and decay of fidelity, respec-
tively. Nevertheless, for the thermal phase transition, the disconti-
nuity of fidelity deviates slightly from the phase boundary given by
the mean-field result �dashed line�, although this is still within the
deviation expected for a finite size system.
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FIG. 6. �Color online� �left� Magnetic susceptibility 
 and �right� specific heat CV of the LMG model for N=800, �=0.2. The phase
boundary given by specific heat and susceptibility agrees well with that of mean-field result �shown in dashed line�. Notice however that the
discontinuity in 
 for small � is less pronounced, given that the phase boundary lies at almost constant temperature �the reverse happens for
the specific heat Cv at low temperatures and ��1�.
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H = −
1

2N

i,j

��	 i
x − Mx��	 j

x − Mx� + Mx�	 i
x + 	 j

x�

+ ��	 i
y − My��	 j

y − My� + �My�	 i
y + 	 j

y� − Mx
2 − �My

2�

+
1 + �

2
− �

i

	 i
z. �19�

We will see that M� is also the order parameter of the phase
transition of LMG model, in analogy with the 1D quantum
XY model. Using a mean-field approximation, the quadratic
terms cancel out, and the Hamiltonian �19� is reduced to

H = − 
i=1

N 
Mx	 i
x + �My	 i

y + �	 i
z −

1

2
Mx

2 −
�

2
My

2 −
1 + �

2N
�

� − 
i=1

N 
Mx	 i
x + �My	 i

y + �	 i
z −

1

2
Mx

2 −
�

2
My

2� , �20�

where we have ignored the last term because this term is
vanishingly small in comparison with other terms in the ther-
modynamics limit. The mean-field Hamiltonian is a sum of
decoupled single-spin Hamiltonians that can be diagonalized
directly, with eigenenergies

E� � � �Mx
2 + �2My

2 + �2 +
1

2
�Mx

2 + �2My
2� �21�

and their corresponding eigenstates

�E+� =
�Mx − i�My��↑� + �E+ − ���↓�
��Mx

2 + �2My
2� + �E+ − ��2

,

�E−� =
�Mx − i�My��↑� + �E− − ���↓�
��Mx

2 + �2My
2� + �E− − ��2

, �22�

where �↑� and �↓� are eigenstates of 	z. The self-consistent
equations for the magnetization �order parameter� are

Mx = �	 i
x� =

1

z
e−�E+�E+�	 i

x�E+� +
1

z
e−�E−�E−�	 i

x�E−� ,

My = �	 i
y� =

1

z
e−�E+�E+�	 i

y�E+� +
1

z
e−�E−�E−�	 i

y�E−� ,

�23�

where z=e−�E+ +e−�E− is the partition function of the mean-
field single-spin Hamiltonian. Combining Eqs. �21�–�23� we
obtain the following two self-consistent equations:

Mx =
tanh����2 + Mx

2 + �2My
2�

��2 + Mx
2 + �2My

2
� Mx,

My =
tanh����2 + Mx

2 + �2My
2�

��2 + Mx
2 + �2My

2
� �My . �24�

For ��1, the above two equations have nontrivial solutions
only when either Mx=0 or My =0. The two parameters can be
further determined by the condition of minimum free energy.

At absolute zero, the free energy equals the ground-state en-
ergy E−. It is not difficult to find that when ��1, Mx�0,
My =0 leads to the minimum ground-state energy, while
when ��1, Mx=0, My �0 leads to the minimum energy
�and Mx=My for �=1�. For example, when ��1, the self-
consistent equation is reduced to

T =
�Mx

2 + �2

tanh−1 �Mx
2 + �2

. �25�

In the �-T plane the phase boundary can be determined by
setting the order parameter to be zero Mx=0. Then, the criti-
cal temperature as a function of external magnetic field � is

Tc =
�

tanh−1 �
, 0 � � � 1. �26�

This mean-field result agrees well with the phase boundary
obtained by fidelity �Fig. 5� and traditional criteria, such as
specific heat Cv and magnetic susceptibility 
 �see Fig. 6�,
because the coordination number of the LMG model is N
−1, i.e., it is big enough to ensure the mean-field approxima-
tion is reliable.

Thus, we have detected a phase transition with fidelity,
which we then confirmed through magnetic susceptibility
and specific heat. Both results agree with the analytical result
from mean-field theory. To the best of our knowledge, these
events occur in this order, and lends support to our discus-
sion above that fidelity is a good precriterion for testing
phase boundaries.

VI. DISCUSSION AND CONCLUSIONS

In the above Sec. III through Sec. V, we discussed the
applicability of F� to characterize thermal phase transitions,
and indicated some of its limitations. Here we would like to
further consider the applications of F� and the “quantum”
�zero temperature� to “classical” �nonzero temperature� tran-
sition of the system �1,33�. For high temperatures, statistical
fluctuations dwarf quantum ones, and the importance of un-
certainty relations for the approximation in Eq. �6� decreases.
In this case, the fidelity becomes a function of 
 and the
phase transition is classical �1,33�. This means that with the
increase of temperature, the fidelity criteria F� for QPT be-
comes equivalent to the susceptibility criteria for thermal
phase transitions. Nevertheless, at low temperature, espe-
cially at zero temperature, the two criteria F� and 
 differ
drastically due to the quantum and classical nature of the
phase transitions. Thus, one can say that the “quantum” fi-
delity susceptibility 
� is different from the classical suscep-
tibility 
 only at low temperatures, and especially at zero
temperature. This heuristic analysis agrees well with the re-
sult of Refs. �1,33�, that with the increase of the temperature
the phase transition changes from “quantum” to “classical.”

In summary, fidelity is a good tool to investigate quantum
phase transitions, and has been extensively studied. How-
ever, when extending to finite-temperature thermal phase
transition, we should be careful about the following subtle
aspects. �1� Fidelity decay occurs at both thermal phase tran-
sitions points and crossover lines, thus we cannot rely on
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fidelity decay alone as an indication of phase transition. For
this, we must fall back on traditional criteria such as the free
energy and its derivatives, or fidelity susceptibility, or the
finite-size scaling of fidelity. �2� For second-order phase tran-
sitions with a divergence in second derivatives of free energy
�type A�, drastic fidelity decay only occurs at critical points,
and critical lines can be reliably indentified. However, for
type-B transition—with a discontinuity instead of a
divergence—fidelity decay occurs at many places besides
critical points, and maximum decay of fidelity may not cor-
respond to phase transition points. Fidelity itself might show
a discontinuity, but it might be visible only for low tempera-
tures. Hence, the standard fidelity criterion for second-order
thermal phase transitions is more applicable to type-A than to
type-B thermal phase transitions. �3� In general, the fidelity
approach seems more applicable to low-temperature thermal
phase transitions only. For a fixed energy scale and a fixed
�T, when the critical temperature is very high, fidelity may
fail to signal the transition because thermal fluctuations wash
out all the relevant information encoded in fidelity. In com-
parison, fidelity susceptibility and traditional criteria based
on free energy are not affected by thermal fluctuations and
are good for any temperature. A solution to this problem is to
use a perturbation that depends on temperature. Our calcula-
tions suggest that it would be sufficient to use �T�T and
����T to keep the sensitivity of fidelity intact with tem-
perature. We also showed that with this simple but nontrivial
choice of perturbation, fidelity can signal correctly the posi-
tion of crossover lines.

Before concluding this paper, we would like to point out
that, despite its limitations for finite-temperature transitions,
fidelity can still be a very useful precriterion to detect ther-
mal phase transitions, especially in systems where we have
no prior knowledge about its order parameter and symme-
tries, or even topological thermal phase transitions without
an order parameter and symmetry breaking. Because of its
simple form, we can plot the fidelity of the system and then
exclude the possibility of thermal phase transitions regimes
without fidelity singularities. Afterwards, we can focus on
suspect areas using free energy and traditional criteria or
fidelity susceptibility or finite-size scaling analysis of fidelity
to distinguish crossovers from thermal phase transitions.
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APPENDIX A: SPECIFIC HEAT AND MIXED-STATE
FIDELITY

We will see here the relation between fidelity with a tem-
perature perturbation and specific heat. From the standard
definition Cv=−T�2F /�T2, where F is the free energy, and
for a sufficiently small perturbation �T /T�1, we can ap-
proximate

Cv�T� � − T�F�T + �T/2� + F�T − �T/2� − 2F�T�
��T/2�2 �

� −
2T2

��T/2�2 ln
Z�T�

�Z�T + �T/2�Z�T − �T/2�

+
2T

�T
ln

Z�T + �T/2�
Z�T − �T/2�

, �A1�

where we have used F=−T ln Z�T�. Now, multiplying by
��2 /�2=�T2 / �T+�T�2, and keeping the lowest order terms
in �T /T,

−
����2

8�2 Cv � ln

Z
�0 + �1

2
�

�Z��0�Z��1�
, �A2�

where �0=1 / �T0−�T /2�, and �1=1 / �T0+�T /2�. We thus
obtain the relation between temperature fidelity F� and spe-
cific heat

F���0,�1,�� =

Z
�0 + �1

2
�

�Z��0�Z��1�
� e−�����2/8�2�Cv. �A3�

APPENDIX B: NONCOMMUTATIVE DENSITY
MATRIX

We look for a simplification of the perturbation in field
fidelity

F���,�0,�1� = Tr���0�1
��0, �B1�

where ��=exp�−�H����� /Z. Usually, H��0� and H��1� do
not commute with each other. However, we can use the
Trotter-Suzuki formula �34� to approximate

���0�1
��0 −

e−��H��0�+�H��1��

Z��,�0�Z��,�1� �
� �3�2�H��0�,H��1��e��H��0��+��H��1��, �B2�

where

�2�H��0�,H��1�� =
1

12

���H��0�,H��1��,H��1���

+
1

2
���H��0�,H��1��,H��0���� .

�B3�

Thus, we have

F���,�0,�1� �
Z
�,

�0 + �1

2
�

�Z��,�0�Z��,�1�

�
Z��,�0�

�Z
�,�0 +
��

2
�Z
�,�0 −

��

2
� �B4�

which is Eq. �6�. The validity condition �B2� indicates that at
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high temperature or small perturbation �typically �3��3�1�,
the fidelity criteria F� for QPT becomes equivalent to sus-
ceptibility criteria for thermal phase transition and thus the
phase transition changes from “quantum” to “classical.”

APPENDIX C: MAGNETIC SUSCEPTIBILITY AND
MIXED-STATE FIDELITY

Similar to Appendix A, we approximate the magnetic sus-
ceptibility


 = −
�2F

��2 �
F
�0 +

��

2
� + F
�0 −

��

2
� − 2F��0�

���/2�2 .

�C1�

Hence we have

−
�����2

8

 � −

����2

8T

F
�0 +
��

2
� + F
�0 −

��

2
� − 2F��0�

���/2�2

�
2 ln Z��0� − ln Z
�0 +

��

2
� − ln Z
T0 −

��

2
�

2

� ln
Z��0�

�Z��0 + ��/2�Z��0 − ��/2�
. �C2�

From Appendix B, we obtain Eq. �7�

F���,�0,�1� �
Z��0�

�Z
�0 +
��

2
�Z
�0 −

��

2
� � e−������2/8�
.

�C3�
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